Distribution of periodic torus orbits on homogeneous spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Distribution of Periodic Torus Orbits on Homogeneous Spaces

We prove results towards the equidistribution of certain families of periodic torus orbits on homogeneous spaces, with particular focus on the case of the diagonal torus acting on quotients of PGLn(R). After attaching to each periodic orbit an integral invariant (the discriminant) our results have the following flavour: certain standard conjectures about the distribution of such orbits hold up ...

متن کامل

Distribution of Periodic Torus Orbits on Homogeneous Spaces

We prove results towards the equidistribution of certain families of periodic torus orbits on homogeneous spaces, with particular focus on the case of the diagonal torus acting on quotients of PGLn(R). After attaching to each periodic orbit an integral invariant (the discriminant) our results have the following flavour: certain standard conjectures about the distribution of such orbits hold up ...

متن کامل

Divergent Torus Orbits in Homogeneous Spaces of Qrank Two

Let G be a semisimple algebraic Qgroup. let. F be an arithmetic subgroup of G . and let, T be an E-split torus in G . We prove that if there is a divergent Tn-orbit in r \ G R , and Q-rank G < 2, t,hen dim T < Q-rankG. This provides a partial answer to a question of G . Tomanov and B. Weiss.

متن کامل

Nondense Orbits of Flows on Homogeneous Spaces

Let F be a nonquasiunipotent one-parameter (cyclic) subgroup of a unimodular Lie group G, Γ a discrete subgroup of G. We prove that for certain classes of subsets Z of the homogeneous space G/Γ, the set of points in G/Γ with F -orbits staying away from Z has full Hausdorff dimension. From this we derive applications to geodesic flows on manifolds of constant negative curvature.

متن کامل

Torus Orbits on Homogeneous Varieties and Kac Polynomials of Quivers

In this paper we prove that the counting polynomials of certain torus orbits in products of partial flag varieties coincides with the Kac polynomials of supernova quivers, which arise in the study of the moduli spaces of certain irregular meromorphic connections on trivial bundles over the projective line. We also prove that these polynomials can be expressed as a specialization of Tutte polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2009

ISSN: 0012-7094

DOI: 10.1215/00127094-2009-023